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Abstract

In this article we discuss some features of unstable ion trajectories in hyperboloid mass spectrometers. It is shown that some
unstable ions may have absolutely convergent trajectories (base trajectories). As a result, the required sorting time is greatly
increased, and the maximum allowed resolution and analysis rate are decreased. Factors influencing the base trajectories
(periodic fluctuation of rf signal shape; mass scanning rate and a scan function shape; ion/molecule interactions of the residual
gas in a vacuum chamber) are investigated. The results of experimental studies that exhibit rather surprising results of the
theory are presented. (Int J Mass Spectrom 190/191 (1999) 113–127) © 1999 Elsevier Science B.V.
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1. Introduction

Hyperboloid mass spectrometers are devices utiliz-
ing oscillating electric fields for ion containment in
two or three dimensions. In the general case the
working surfaces of electrode systems are one-sheet
hyperboloid or parted hyperboloid. When mass spec-
trometry first employed electrodynamic fields there
were only two types of electrode systems: the linear
quadrupole mass filter and the axially symmetric ion
trap [1]. A diversity of different electrode systems has
been described since that time. This prompts us to
suggest that the mass spectrometry community use a
general title for such mass spectrometers: hyperboloid

mass spectrometers (HMS). The theoretical basis for
the operation of these devices is the theory of differ-
ential equations of second order with periodic coeffi-
cients developed in detail at the end of the last
century. Two types of equations are important for
hyperboloid mass spectrometry: the Hill equation and
its special case—the Mathieu equation.

The development of hyperboloid mass spectrome-
ters was accompanied by spectacular achievements in
the theory of such devices. The dynamics of this
thrilling process can be retraced in the fundamental
works of Paul and Steinwedel [2], Dawson and
Whetten [3,4], March and Todd [5,6,7], and other
scientists who provided leadership in this technique of
dynamic mass spectrometry.

The principle of independence of ion oscillations
along the different coordinate axes is implied in the
classical variant of HMS. Such a mode of operation is
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called a linear mode. To describe this mode it is
sufficient to analyze solutions of the canonical Hill or
Mathieu equation [8].

In the present article some features of the divergent
solutions of the Hill equation that determine trajecto-
ries of the respective ions are discussed in terms of the
linear theory. Two major processes define the analyt-
ical capability of HMS: the confinement of the needed
ions within the dynamic three-dimensional field (this
process determines the sensitivity of a device, in
general), and a process of ion sorting (when unwanted
ions collide with the analyzer electrodes). The second
process is concerned with trajectories of unstable ions
and defines the resolution that can be achieved with a
mass spectrometer.

It is commonly accepted that unstable ions have
trajectories with a continuously growing amplitude
and, therefore, in order to achieve the required reso-
lution for ions with different values of mass to charge
ratio (m/z) it is sufficient to set the respective sorting
time. But, we will show here that some ions, with
working points that lie within unstable regions of the
general stability diagram, may have absolutely con-
verging trajectories (base trajectories). Thus, the time
of sorting of the ions and removing them from an
analyzer is sharply increased and in principle tends to
infinity. These ions can limit the relative sensitivity of
HMS, deteriorate mass peak shapes, and increase
sorting time which, in turn, limits the maximum
analysis speed.

2. Base solutions

Different shapes of rf signals, such as square or
sine waves, that can be applied to electrodes of
hyperboloid mass spectrometers have been used in-
creasingly. Therefore, we study here some features of
the Hill equation as the general equation describing
trajectories of the charged particles. Our focus here is
on the linear theory of HMS, which does not include
the field distortions and which implies the principle of
independence of ion oscillations along the different
axes. This allows us to confine ourselves to solving a
one-dimensional problem.

The Hill equation is

ÿ~t! 1 C~t! y~t! 5 0 (1)

whereC(t) is a periodic function of periodtp. Let us
considery1(t) andy2(t) as two particular independent
solutions of Eq. (1);y0, ẏ0, and t0—the initial
coordinate, velocity, and phase;a1 and a2, b1 and
b2—elements of the transformation matrix of partial
solutions (Floquet’s coefficients [8]):

Fy1~t 1 tp!
y2~t 1 tp!

G 5 F a1 a2

b1 b2
G 3 Fy1~t!

y2~t!
G (2)

Then we have:

g0y~t! 5 y0@ ẏ2~t0! y1~t! 2 ẏ1~t0! y2~t!#

1 ẏ0@ y1~t0! y2~t! 2 y2~t0! y1~t!# (3)

g0y~t 1 tp! 5 y0F ẏ2~t0!^a1y1~t! 1 a2y2~t!&
2ẏ1~t0!^b1y1~t! 1 b2y2~t!&

G
1 ẏ0Fy1~t0!^b1y1~t! 1 b2y2~t!&

2y2~t0!^a1y1~t! 1 a2y2~t!&
G
(4)

whereg0 is the Wronskian determinant:

g0 5 ẏ2~t! y1~t! 2 ẏ1~t! y2~t! (5)

Now we find conditions under which the following
expression is correct:

y~t 1 tp! 5 K0y~t! (6)

whereK0 is a constant.
From Eqs. (2)–(5) we obtain the following system:

K01,2
5 b0 6 ~b0

2 2 1!1/2 (7a)

y0
2@~b2 2 a1! ẏ2~t0! ẏ1~t0! 1 b1ẏ1

2~t0! 2 a2ẏ2
2~t0!#

1 ẏ0
2@~b22a1! y2~t0! y1~t0!1b1y1

2~t0!2a2y2
2~t0!#

2 2y0ẏ0F~b2 2 a1!^ẏ2~t0!y1~t0! 1 ẏ1~t0!y2~t0!&/2
1b1ẏ1~t0!y1~t0! 2 a2ẏ2~t0!y2~t0!

G5 0

(7b)

whereb0 5 (a1 1 b2)/2, the stability parameter well
known in theory [1]. Ifb0

2 . 1 then we have unstable
solutions of Eq. (1) and ifb0

2 , 1, solutions are stable.
Solutions are unstable if the amplitude of motion,y(t)
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unrestrictedly increases with time; solutions are stable
when the amplitude is limited in time. The function
C(t) has some parameters. For example, for the
canonical form of the Mathieu equationC(t) 5 a 2

2q cos(2t) the parameters are coefficientsa andq that
define the stability diagram. The boundaries of the
diagram correspond tob0

2 5 1. The stability diagram
is fundamental for the theory of HMS.

Substitution of the obtained expression forK0 into
Eq. (6) yields

y~t 1 tp!

y~t!
5 b0 6 ~b0

2 2 1!1/2 (8)

Let us carefully investigate the meaning of this
equation. Now, ifb0

2 $ 1, then the solution is unstable
and the right part of Eq. (8) is real. Ifb0 . 1, then for
the plus sign in (8) we have determined that the right
part is greater than 1. This means that a coordinate of
the charged particle is continuously increased from
one period to another and we have a growing solution.
If b0 . 1, then for the minus sign in (8)K02

is always
less than 1 and a coordinate continuously decreases
and converges to zero from period to period. Thus, we
come to an important conclusion: Eq. (8) describes
two types of unstable solutions. One solution is
continuously divergent [the plus sign in Eq. (8)] and
the other is continuously convergent [the minus sign
in Eq. (8)]. It can be seen that in the unstable region
for which b0 , 21, the plus sign in Eq. (8) corre-
sponds to a continuously convergent solution and the
minus sign corresponds to a continuously divergent
solution. It should be noted, however, that in the last
case the general solution changes its sign from period
to period, and the respective trajectory has the char-
acter of oscillatory movement with a growing ampli-
tude. Let us call continuously convergent unstable
solutions base solutions and the corresponding trajec-
tories of ions base trajectories.

It is easy to note from Eq. (8) that the rate of
convergence of the base solutions and the rate of
growth of continuously divergent solutions are deter-
mined by the parameterb0 only. At those boundaries
of the diagram whereb0

2 5 1, the rate converges to
zero. If ub0u is increased, then the rate of growth of

continuously divergent solutions and the rate of con-
vergence of the base trajectories [which satisfy Eqs.
(6), (7b), and (8)] are increased. At the boundaries of
the diagram these solutions degenerate to one solution
for which

y~t 1 tp!

y~t!
5 61 (9)

Here the rate of convergence of the base solutions
is equal to zero. Let us call such solutions the
equilibrium solutions and the corresponding trajecto-
ries of ions equilibrium trajectories. We see two signs
in Eq. (9). This means that there are two types of such
solutions. For the plus sign in Eq. (9) we obtain one
solution for which the coordinate is repeated over the
period; for the minus sign we have the other solution
for which the coordinate changes its sign only.

We obtain initial conditions under which these
trajectories can be achieved from Eq. (7b). This
equation describes two lines lying on the phase plane,
and intersecting the origin. One line corresponds to
the base solution, and the other corresponds to a
continuously divergent solution. The line correspond-
ing to the base solution coincides with the line of the
continuously divergent solution.

Thus, trajectories of ions, working points of which
lie in the unstable region of the stability diagram, can
absolutely converge and the time of flight of ions
within the analyzer is infinite. This means that such
unstable particles cannot be removed from the ana-
lyzer.

It should be noted that Eqs. (6), (8), and (9) are also
valid for velocities of ions. For example, if the
coordinate of an ion, the trajectory of which is a base
trajectory, is decreased, then the velocity of the ion is
decreased also, and converges to zero in time. Finally,
ions are focused to the center.

3. Some features of “regular” unstable solutions
of the Hill equation

Our task here is to study some features of regular
unstable solutions, for which Eqs. (6), (7b), and (8)
are not true.
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If we have t 5 t0, we find the following system
from Eqs. (2), (3), and (4):

gẏ~t0 1 tp! 5 C1y0 1 C2ẏ0
(10)

gy~t0 1 tp! 5 C3y0 1 C4ẏ0

whereC i are functions oft0 (initial phase).
Now we can obtain

D~n 1 1! 5
C1 1 D~n!C2

C3 1 D~n!C4
(11)

where D(n) 5 ẏ0(n)/y0(n) is the slope of the line
lying on the phase plane on which the ion character-
istic point is currently located at the beginning of the
nth period of functionC(t); andD(n 1 1) at the end
of that period.

We can see from (10) that coefficientsCi are
coefficients of the transformation matrix for the gen-
eral solution of the Hill equation (a1, a2, b1, andb2

are transformation coefficients of partial solutions for
this equation). These coefficients can be easily trans-
formed into each other. Practically, it is more conve-
nient to use coefficientsCi for a complicated function
C(t) in Eq. (1) [if C(t) is a square function, for
instance]. Coefficientsa i and b i can be used if
analytic expressions fory1(t) and y2(t) are known
(for example, in the case of the Mathieu equation
[8]).

It can be shown that the following expressions are
true:

2b0 5 a1 1 b2 5 C2 1 C3
(12)

a2b1 2 b2a1 5 C2C3 2 C1C4 5 1

Expression (11) andC i show how the location of
the working line of the ion on the phase plane is
changed from period to period. It can be seen that for
D(n) there is a stationary valueD00 that is constant
from period to periodtp. From (11) we can obtain the
following equation for two valuesD001,2

:

D001,2
5

2C3 1 b0 6 ~b0
2 2 1!1/2

C4
(13)

When we substitute Eq. (13) into Eq. (10) and
applyy0 5 y(n) andẏ0 5 ẏ(n), we obtain an expres-
sion identical to Eq. (8):

y~n 1 1!

y~n!
5 b0 6 ~b0

2 2 1!1/2 (14)

This means that the base solution has an interesting
feature: the characteristic point of an ion on the phase
plane returns to the same line over one period. This
feature, of course, is also specific for a continuously
divergent solution. Thus, we should define unstable
solutions (and trajectories also), which satisfy Eqs.
(6), (7b), and (8), as stationary.

In the case whenD(n) is close toD00, the change
of remainderDp 5 D(n) 2 D00 over the period may
be estimated as:

Dp > Dp0 expS22
6~b0

2 2 1!1/2

b0 6 ~b0
2 2 1!1/2D (15)

Now, if b0 . 1 then for the plus sign in Eq. (15),
Dp is decreased in time (over the next period). This
means thatD(n) converges toD00 in time (from
period to period). For the minus sign in Eq. (15)Dp is
increased in time.

If b0 , 21 the situation changes: under the upper
sign in Eq. (15)Dp is increased and for the lower sign
Dp is decreased and converges to zero. This indicates
that ordinary unstable solutions, for which the initial
value of the working line slopeD0 is different from
D00, converges to one stationary solution in time and
goes away from the other. The first stationary solution
is called steady stationary solution (SSS) and the
second—unsteady stationary solution (USS). We
have mentioned above that the ordinary solutions
(D0 Þ D00) converge to the SSS and go away from the
USS. This means that trajectories of the unstable
particles become similar with time and for a given
working point at the stability diagram all unstable
particles make synchronous oscillatory movements. It
is easy to demonstrate that in the case of a square rf
signal all particles pass their extreme points at the
same time. Thus, the base solutions of the Hill
equation are the unsteady stationary solutions. The
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continuously divergent solutions are the steady sta-
tionary solutions.

In the case when a square wave rf signal (Fig. 1) is
applied to the electrode system of the analyzer we
obtain a simple equation for the extreme characteristic
solution [9,10]:

yextr
2 ~n! 5 c1 1 c2 exp~2vn! 1 c3 exp~22vn!

(16a)

where

c1 5
1

2 Fy0
2 1

ẏ0
2

a1
2 2

1

a1
2 b0

2 2 d0
2G

c2 5
1

4 F ~ y0 1 d0!
2 1

1

a1
2 ~ ẏ0 1 b0!

2G (16b)

c3 5
1

4 F ~ y0 2 d0!
2 1

1

a1
2 ~ ẏ0 2 b0!

2G
n—time (number of periods);

b0 5
y0C1 1 ẏ0@C2 2 b0#

~b0
2 2 1!1/2

d0 5
ẏ0C4 1 y0@C3 2 b0#

~b0
2 2 1!1/2

(16c)

a1
2 5

2ZU1htp
2

m~1 1 n0 1 p0! ya
2

a2
2 5

2ZU2htp
2

m~1 1 n0 1 p0! ya
2

wherea1 anda2 are pulse coordinates that define the
stability diagram;Z andm are charge and mass of an
ion, respectively;U1 is the amplitude of the positive
pulse (focusing pulse);U2 is the amplitude of the
negative pulse (defocusing pulse);tp is the period of
the rf signal;n0, p0, andh are geometrical parameters
of the electrode system:n0 5 xa

2/ya
2; p0 5 xa

2/za
2; xa,

ya, za are distances between the electrode system
center and electrodes along the corresponding axes;
h 5 1 for the x coordinate,h 5 1 1 p0 for the y
coordinate, andh 5 p0 for the z coordinate. For the
quadrupole mass filterp0 5 0; for the axisymmetri-
cal ion trapp0 5 1.

The function (16a) defines extreme values of the
general solution at thenth period and can be inter-
preted as an envelope curve.

It follows from (16a) that for the SSS the condition
c3 5 0 remains true and for the base solution condi-
tion c2 5 0 remains true;c1 5 0 in both cases. For
the ordinary solutionsc2 Þ 0 and c3 Þ 0. The
amplitude of an ion trajectory can be either increased
at once after injection or decreased (compressed) and
then increased depending on the ratio betweenc1 and
c2. Compressed trajectories appear whenc3 $ c2.

Compression of an unstable ion beam is very
unfavorable for effective sorting, because it increases
the required sorting time of ions. However, in our
opinion, compression of ion trajectories demonstrates

Fig. 1. Waveforms of the rf signals. (a) A square wave signal;t1 5
t2 for the meander; (b) the EC signal (t1 5 t3); tp is the period of
the signal.
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attractive prospects in terms of the ion trapping and
development of new analytical principles.

The time of ion trapping in the trap volume,ntrap,
is determined from Eq. (16a) whenyextr

2 (ntrap) 5 1. If
c2 5 0 then the trapping time approaches infinity
(“base” trajectories). In this case “phase,” “energy,”
and “space” windows for the trapped particles tend to
zero. For finite values of the trapping time, these
windows expand, which allows practical use of this
injection technique.

It can be shown that from (16a) we can derive an
equation similar to (8):

yextr~n 1 1!

yextr~n!
5 b0 6 ~b0

2 2 1!1/2 (17)

When the working point of an ion lies on theb0
2 5

1 boundary of the stability diagram then the expres-
sion for yextr

2 (n) is given by:

yextr
2 ~n! 5 $ y0 1 @ y0~C3 2 b0! 1 ẏ0C4#n%2

1
1

a1
2 $ ẏ0 1 @ y0C1 1 ẏ0~C2 2 b0!#n%2

(18)

In this case for the equilibrium solution we have

K01,2
5 61

It follows from (18) that the slope of the working
line on the phase plane should be defined as:

ẏ0

y0
5 2

C3 2 b0

C4
5 2

C1

C2 2 b0
(19)

Then the maximum deviation of an ion from the
origin does not depend onn and can be found from:

yextr
2 5 y0

2 1
ẏ0

2

a1
2 (20)

Such particles can oscillate at some distance from
the origin (their coordinates are greater then zero) or
in the vicinity of the origin with the same amplitude.

In the case where particles are injected into the rf
field during the optimal phase of the first kind (the
middle of the focusing pulse—see Fig. 1) it can be

shown that C2 5 C3 5 b0 and for the b0
2 5 1

boundary C1C4 5 0. This means that on some
boundariesC1 5 0 andC4 Þ 0, and on the others
C4 5 0 andC1 Þ 0. Thus, we call the formerC1

boundaries and the latterC4 boundaries. Now, we
rewrite Eq. (18) in the following way:

yextr
2 ~n! 5 $ y0 1 ẏ0C4n%2 1

1

a1
2 $ ẏ0 1 y0C1n%2

(21)

We can see from this equation that on theC1

boundary for injected ions with zero velocity:

yextr
2 ~n!uC150 5 y0

2 (22)

i.e. oscillation amplitude is constant; on theC4

boundary:

yextr
2 ~n!uC450 5 y0

2F1 1
C1

2n2

a1
2 G (23)

Otherwise, on theC1 boundary for injected ions
with zero coordinate but finite velocity,ẏ0,

yextr
2 ~n!uC150 5

ẏ0
2

a1
2 @1 1 a1

2C4
2n2# (24)

i.e. the oscillation amplitude increases in time; and on
the C4 boundary:

yextr
2 ~n!uC450 5

ẏ0
2

a1
2 (25)

i.e. the oscillation amplitude is constant.
The dependence of thez coordinate of an ion as a

function of sorting time is demonstrated in Fig. 2 (the
trajectory is close to the base one). The working point
of the ion is located in the unstable region close to the
upper apex of the first stability zone for the ion trap
with the square wave rf signal witht1 5 t2 meander
[Fig. 1(a)]. The pulse coordinates for the axially
symmetric ion trap can be described as

a1r
2 5

2ZU1tp
2

m~2 1 n0!d
2 ; a2r

2 5
2ZU2tp

2

m~2 1 n0!d
2 ; n0 5 ra

2/d2

wherera is the minimum distance between the elec-
trode system center and the ring electrode, andd is the
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minimum distance between the electrode system center
and one endcap electrode. Coordinatesr and z are
normalized to the characteristic dimension of the elec-
trode systemd; normalized velocities are given by

ṙ 5 ṙ real

tp
d

; ż 5 żreal

tp
d

(26)

whereṙ real is the absolute value of ion velocity along
the r coordinate;żreal is the absolute value of ion
velocity along thez coordinate.

It can be seen from Fig. 2 that time of flight of the
unstable ion (m/z28) in the field is 45 periods of the
rf field even for a large initial coordinate (z0 5 1)
and initial velocity (ż0 5 20.3016). Theentrance
(initial) energy of the ion is 1.4 eV; the amplitudeU1

of the positive pulse is 590 V;tp 5 1.9 ms; a1 5
3.579669;d 5 ra 5 19 mm.

4. Base solutions of first and second kinds. Lines
of absolute focusing

The solutions with initial conditions of the first and
second kinds are very important for theory of the
HMS. Solutions of the first kind are defined forẏ0 5
0, and solutions of the second fory0 5 0. For

example, for the ion trap with an electron beam to
form ions and a large amplitude of rf signal applied to
electrodes, the initial velocities of the created ions can
approximately be taken equal to zero. Under these
circumstances we can describe parameters of such a
device by using solutions of the Hill equation of the
first kind. For the quadrupole mass filter, transverse
velocities of the injected ions may greatly exceed
thermal velocities, but initial coordinates are small
because of small entrance holes. Here, solutions of the
equation of the second kind became important.

Conditions under which the base solutions of the
first kind and the second kind are possible can be
defined from Eq. (7b). It is easy to see that the
expression in the first set of brackets is equal to zero
for stationary solutions of the first kind; the expres-
sion in the second set of brackets is equal to zero for
stationary solutions of the second kind.

It can be shown that the condition:

C1 5 0 (27)

is true for stationary solutions of the first kind; and the
condition:

C4 5 0 (28)

is true for stationary solutions of the second kind.
For base solutions [in addition to (27) and (28)] we

must allow for the following conditions: for base
solutions of the second kind whenb0 . 1 thenC3 .

1; whenb0 , 21 thenC3 , 21. For base solutions
of the first kind: whenb0 . 1 thenC2 . 1, and when
b0 , 21 thenC2 , 21.

It can be shown from (12) that these additional
conditions contradict each other. This means that in
different instability regions (we mean zones withb0

. 1 andb0 , 21) only different base solutions are
possible—of the first kind or the second.

All conditions, (27) and (28) with additional con-
ditions, describe lines of base solutions of both kinds.
The location of each line of such a family within the
instability zone is defined by the initial phase and by
the shape of the functionC(t) in Eq. (1). When the
additional conditions described are in contrast to
conditions (27) and (28), then we do not have any

Fig. 2. Temporary converging trajectory of an ion within the axially
symmetric ion trap in the case when the rf signal meander is applied
to the electrodes; initial coordinatez0 5 1; initial velocity ż0 5
20.3016; initial phaseT0 5 TBS 2 1.5 3 1026 5 0.770014;
a1 5 3.579669,a2 5 2.498629;b0z 5 1.01824;whereT, T0,
TBS are time, initial phase, and initial phase corresponding to the
base trajectory, respectively, normalized to an rf period.
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base solutions in these zones and only the stationary
steady solutions are possible there.

The general stability diagram for a given HMS is
formed by simultaneous overlapping of zones for the
respective coordinates. Here, zones (in which lines of
base solutions are possible) overlap each other, and
lines of absolute focusing appear.

For one phase these lines are the locus of points
that are formed by intersection of lines of base
solutions for different coordinate axes. When the
working point is located on a line of absolute focus-
ing, then (for the quadrupole mass filter, for example)
an ion injected into the field will move along the
symmetry axis for some time. Within the ion trap such
an ion will focus in the center of electrode system and
stop there after a period of time where it will theoret-
ically stay for an indefinite time. This means that the
sorting rate of unstable ions is dramatically decreased.
These ions are herded in the center of the ion trap at
first, and then they are slowly moved to electrodes.

Three types of absolute focusing may appear in the
general case: absolute focusing lines of the first,
second, and mixed kinds. In the first case, lines are
defined by the base solutions of the first kind; in the
second case—by base solutions of the second kind; in
the third case—by base solutions of both the first and
the second kinds. For the quadrupole mass filter, the
absolute focusing line of the second kind is important;
for the ion trap with injection of ionizing electron
beam, the absolute focusing line of the mixed kind is
important. For example, when the electron beam is
injected along thez coordinate, base solutions of the
second kind are important for ther coordinate, and for
thez coordinate, the base solutions of the first kind are
important.

In Fig. 3 the general stability diagram for the
quadrupole mass filter is shown with lines of absolute
focusing of the second kind; lines of the mixed kind
for axially symmetric ion trap and its stability diagram
are shown in Fig. 4. The stability diagrams are plotted
using the pulse parametersa1 and a2 as coordinate
axes for the square wave rf signal (meander).

The trajectory of an ion, the working point of
which lies on the line of absolute focusing and
labelled 3 in Fig. 4, is demonstrated in Fig. 5 for the

axially symmetric ion trap. The conducted calculation
showed that in order to get to the center of the
analyzer the ion needs only 10 periods of the rf field.

5. Influence of base solutions on sorting of the
charged particles in HMS

As we have mentioned above, base trajectories
appearing in HMS essentially increase the residence

Fig. 3. The general stability diagram in the pulse coordinatesa1 and
a2 for the quadrupole mass filter in the case of meander; 1,
2—absolute focusing lines of the second kind.

Fig. 4. The general stability diagram in the pulse coordinatesa1 and
a2 for the axially symmetric ion trap in the case of meander; 1,
2—absolute focusing lines of the mixed kind for ther coordinate
and of the first kind for thez coordinate; 3—the ion working point,
trajectory of which is shown in Fig. 5.
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time of unstable particles within the volume of the
analyzer. This decreases sorting efficiency, and as a
result, affects the mass peak shape. In order to
estimate the influence of base trajectories on sorting
efficiency we will compare an injection area on the
phase plane with so-called zones of “base” solutions.

We have shown above that for a given injection
phase of the charged particles there is a line on the
phase plane on which all characteristic points of ions
with base trajectories lie. Zones of base solutions on
the phase plane can be found by varying of initial
phase within a possible (or a given) range. If the
characteristic point of an ion lies within such a zone,
then this ion flies on the base trajectory for an
injection phase.

Zones of base solutions are sectors on the phase
plane. It is clear that if we inject analyzed ions into the
field and their characteristic points lie outside of zones
of base solutions, then sorting conditions are favor-
able.

The shape of zones of base solutions (ZBS) de-
pends on theC i functions, which in turn, depend on
theC(t) function (i.e. on the driving rf signal applied
to electrodes). Zones of base solutions for an axially

symmetric ion trap are shown in Fig. 6. They are
defined for the points located close to the apex of the
general stability zone for a square wave rf signal
meander. Zones of base solutions are shaded.

We can see that there are some zones that are free
from “base” solutions. In order to improve mass peak
shape by increasing the sorting efficiency of unstable
ions, for ion injection we should make use of zones
free from base solutions (ZFBS). It is seen from Fig.
6 that to achieve a high degree of sorting along ther
coordinate, the ionizing electron beam should be
injected along ther coordinate during the negative
(defocusing) pulse. For thez coordinate, formation of
ions with small initial coordinates and large initial
velocities is optimal (irrespective of an injection
pulse). Thus, for an ion trap operating close to the

Fig. 5. Trajectory of the ion, working point of which lies on the
absolute focusing line of the mixed kind for the axially symmetric
ion trap in the case of meander; initial conditions of the first kind
for thez coordinate, and initial conditions of the second kind for the
r coordinate (the working point is demonstrated in Fig. 4);a1 5
3.9693,a2 5 4.1531,b0r 5 21.4664,b0z 5 28.2101,T0 5
0.9.

Fig. 6. Zones of base solutions for the axially symmetric ion trap in
the case of meander; working points lie close to the apex of the first
stability zone; (a), (b) zones of base solutions along thez coordi-
nate:a2 5 2.502629,a1 5 3.585399,b0z 5 1.003666;(c), (d)
zones of base solutions along ther coordinate:a2 5 2.508805,
a1 5 3.594248,b0r 5 21.001748;(a), (c) the positive (focus-
ing along ther coordinate) pulse; (b), (d) the negative (defocusing
along ther coordinate) pulse.
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apex of the first stability zone, injection of an ionizing
electron beam through the ring electrode at a right
angle to the symmetry axisz is optimal. The electron
beam must have the shape of a narrow sheet beam.

It should be noted that from the configuration of
the ZBS in Fig. 6, it follows that base solutions of the
second kind do not appear for thez coordinate
because the axisz0 5 0 lies out of the ZBS. At the
same time, base trajectories of the first kind appear
during the whole period of the rf field. For ther
coordinate, on the other hand, base solutions of the
first kind do not appear during the defocusing pulse,
but base solutions of the second kind appear.

From the point of view of effective sorting, the use
of the EC signal has good prospects for HMS [11].
The shape of the EC signal is shown in Fig. 1(b). It
consists of two positive pulses separated by a time
interval when the voltage is equal to zero (the active
part of the EC signal), and one negative pulse. Zones
of base solutions for the ion trap operated with the EC
signal are shown in Fig. 7. It is seen that for the active
part of the EC signal zones of base solutions on the
phase plane are very small for bothr and z coordi-
nates. It follows from the conducted calculations that
for the upper zones of the stability diagram (for the
ion trap, for example) an ion beam must be injected
during the active part of the signal.

6. Influence of different factors on behavior of
base trajectories and efficiency of sorting of the
charged particles in HMS

We have developed a reliable computer program
for mass peak calculations that considers details of
base trajectories. This program allows us to investi-
gate various factors governing base trajectories and
mass peak shape. Such factors are: random fluctua-
tions of the working signal (frequency, amplitude, dc
voltage); mass scan rate and shape of a scan function;
interactions of ions with molecules of the residual gas.

Calculations conducted showed that all these fac-
tors eliminate base trajectories. Trajectories are mod-
ified to conventional ones with time and tend to the
steady stationary trajectories. The trapping time of

unstable ions in the working volume of the HMS is
decreased.

An example of the influence of fluctuations of the
pulse rf voltage amplitude on a base solution is given
in Fig. 8. Base trajectories in the ion trap are presented
here for ideal signal (meander) without fluctuations
and for a signal distorted by random fluctuations of rf
voltage amplitude.

Fig. 7. Zones of base solutions for the axially symmetric ion trap in
the case of the EC signal for the working points located close to the
apex of the first stability zone: (a)–(d) zones of base solutions along
the z coordinate: a2 5 4.275846, a1 5 4.405942, b0z 5
1.005788;(e)–(h): zones of base solutions along ther coordinate:
a2 5 4.28498,a1 5 4.415354,b0r 5 21.000494;(a), (e) the
first positive (focusing along ther coordinate) pulse; (b), (f) the
active part of the EC signal; (c), (g) the second positive (defocusing
along ther coordinate) pulse; (d), (h) the negative (defocusing
along ther coordinate) pulse.

122 E.P. Sheretov et al./International Journal of Mass Spectrometry 190/191 (1999) 113–127



Fluctuations influence not only base trajectories
but temporally converging ones that are close to the
base trajectories seen in Fig. 2. When fluctuations are
increased, then the “dead time” of the trajectories (a
period of time when an ion coordinate is less than its
initial value) is decreased. The dependence of the
dead time on the “fluctuation frequency” has a mini-
mum point at the frequency close to the basic fre-
quency of the working signal. More destructive fluc-
tuations for base trajectories are fluctuations of an
amplitude and dc voltage of the rf signal.

Fluctuations of an rf signal shape play a positive
role (there are limits, of course). It follows from the

calculations that the maximum resolution can be
increased up to 2–4 times by setting fluctuations for
about 0.1%.

High-speed mass scans also destroy base trajecto-
ries, and decrease the demanded sorting time. An
exception is a step mass scan, when a period of a step
is equal to or greater than the sorting time. Numerous
computer simulations of different modes of mass scan-
ning have shown that the increasing of scan speed up to
103 Da s21 improves the mass peak shape, and that mass
scanning by changing frequency has a slight advantage.

The influence of residual gas on base trajectories
can be predicted. When the concentration of a light
buffer gas in the ion trap is increased, the dead time of
the base trajectories and trajectories close to the base
ones is decreased and the efficiency of sorting unsta-
ble ions is increased.

7. Experimental

It follows from the conducted computer simulation
that the negative influence of the base trajectories on
charged particle analysis and the mass peak shape
depends on features of charged particle injection into
the rf field and the shape of the working rf signal. In
order to improve the mass peak shape it is preferable
to inject the electron beam during the negative (defo-
cusing along ther axis) pulse when the ion trap operates
with the meander [Fig. 1(a)]. The use of the EC signal
[Fig. 1(b)] yields the better mass peak shape. These
results encouraged us to experimentally compare mass
peak shapes obtained with signals of both types.

Experiments were carried out on the axially sym-
metric ion trap with characteristic dimensionsd 5 19
mm andra 5 19 mm, operated in the upper apex of
the first stability zone. The ionizing electron beam
was injected in a radial plane through the narrow
radial slit (0.33 10 mm) in the ring electrode. A
nominal electron energy of 70 eV was kept constant.
It was possible to inject the electron beam during any
phase of the rf signal. The working pressure was
about 23 1026 Torr.

Timing sequences for the operation of the ion trap
in the experiments are shown in Fig. 9. When the ion

Fig. 8. Base trajectories within the axially symmetric ion trap in the
case of meander: (a), (b) ideal working signal without fluctuation;
(c)–(f) working signal with fluctuation of ac voltage amplitude; (c),
(d) level of fluctuations is 0.01%; (e), (f) level of fluctuations is
0.1%; (c) working signal with fluctuation of ac voltage amplitude;
(a), (c), (e)a2 5 2.509805,a1 5 3.59568,b0r 5 21.003496,
T0 5 0.256783;(b), (d), (f) a2 5 2.502629,a1 5 3.585399,
b0z 5 1.003666,T0 5 0.258083.
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trap operated with the meander [Fig. 9(a)], a positive
dc potential of (156–162) V was applied to the ring
electrode, and an rf pulse of positive polarity with
amplitude of 240 V was applied to the endcap
electrodes. The duration of the positive pulse was
equal to the duration of the interval with zero poten-
tial. The voltage stability was about 1024.

To form the EC signal [Fig. 9(b)] we used two rf
pulse signals. The first rf signal of positive polarity
with amplitude of (235–255) V was applied to the ring
electrode. The second rf signal of positive polarity
with amplitude of 220 V was applied to the endcap
electrodes. Thus, two positive pulses with equal
duration (separated by a time interval when the
voltage is equal to zero) and one negative pulse make
one period of the EC signal. A mass scan was
performed by changing the frequency of both rf
signals. The rf signals (meander and the EC signal)
were formed by the same output stages of a pulse
generator.

Each sorting cycle started from ionization (during
one period of the rf signal,tp) when the potential of
the filament was set to the value that provided the
required ionization energy (Fig. 9, OA). The potential
of the filament was maintained positive in order to cut
off the electron beam during the ion sorting. At the
end of a preset sorting time (Fig. 9, AB), the potential
of electrodes was changed and the sorted ions were
ejected through a shaped grid in one of the endcaps (a
constant positive potential was applied to the ring
electrode in the case of the EC signal, and the
potential of the endcap electrode was equal to zero in
the case of the meander), Fig. 9, BC.

8. Results and discussion

Mass peaks ofm/z 28 obtained for ionization
during the positive (focusing along ther coordinate)
and the negative (defocusing along ther coordinate)
pulses of the meander are shown in Fig. 10. Intensity
of the peaks was normalized to the maximum peak
height. Experiments were done for a sorting time of
70 rf periods and for one position of working line on
the stability diagram. We can see from Fig. 10 that the

electron beam injection during the defocusing pulse
gives a mass peak with sharper edges (mass peak 2).
This indicates that the sorting efficiency in this case is
much higher. In the unstable region for thez coordi-
nate (this corresponds to the higher masses or to the
right edge of the peak) the sorting efficiency for the
“unstable” ions differs slightly. In the unstable region
for the r coordinate (this corresponds to the lower
masses or to the left edge of the peak) the sorting
efficiency changes significantly. These experimen-
tal results match the results of theoretical calcula-
tions presented in Fig. 6. Furthermore, the maxi-
mum resolution is more than two times greater, and
resolution was increased with an increase of the
sorting time.

Mass peaks ofm/z 28 obtained for the EC signal
and the sorting timensort 5 70 periods are demon-
strated in Fig. 11. The electron beam was injected
during the first positive pulse (mass peak 1) and the
active part of the rf signal (mass peak 2). The sorting
efficiency was much higher when ionization was
carried out during the active part of the period. The
maximum resolution, obtained for the greater slope of
the working line, is three times greater than for
injection during the first focusing pulse.

In Fig. 12 we compare mass peaks ofm/z 28
achieved with the ion trap, operated with a pulse
signal (meander) and the EC signal. Mass peak 1 in
this figure corresponds to ionization during the nega-
tive (defocusing) pulse of the meander, and mass peak
2 corresponds to ionization during the active part of
the EC signal. The experiments were done with a
sorting time of 90 periods of the rf field. The use of
the EC signal improves the peak shape. More impres-
sive results have been achieved when we compared
maximum resolutions defined at the different levels of
the peak maximum. For meander we had a resolution
of 120 at a level of 1021 that falls down to a resolution
of about 30 at a level of 1025. At the same time, for
the EC signal a resolution of 300 was achieved at a
level of 1021 and 220 at a level of 1025. Computer
simulations of mass peaks in terms of base trajecto-
ries, conducted in our laboratory, completely match
these experimental results.

We compare mass peaks by estimation of the
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Fig. 9. Timing sequences for operation of the ion trap in the experimental studies of the mass peak shape: (a) meander; (b) EC signal;Uring

is the potential of the ring electrode;Uendcapis the potential of the endcap electrodes; OA—ionization; AB—ion sorting; BC—ion ejection;
OC—a working cycle.
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quotient of resolution defined at the levels of the peak
maximum differing by an order of 10:

Kf 5 R10L/RL

whereL is a level at which resolution is defined. Let
us call this parameter a coefficient of a peak shape.
The values of this coefficient, averaged over several

levels (beginning from the level 1021) for the mean-
der and the EC signal are presented in Table 1. It can
be seen from this table that the theory corresponds to
experimental data, and that use of the EC signal is
preferable to the meander.

9. Conclusions

The results presented in this article were unex-
pected, even for the authors. We chose to submit our
article for this special issue thanks to professor
Raymond E. March’s idea [12] that: “The theory of
ion trap operation differs from those of other mass

Fig. 10. Mass peak shapes obtained in experiments with the ion trap
for 70 sorting periods; working signal is meander; 1—the ionizing
electron beam was injected during the positive pulse (focusing
along ther coordinate); 2—ionization during the negative pulse
(defocusing along ther coordinate).

Fig. 11. Mass peak shapes obtained in experiments with the ion trap
for 70 sorting periods; working signal is EC signal; the first stability
zone; 1—the ionizing electron beam was injected during the first
positive pulse (focusing along ther coordinate); 2—ionization
during the active part of the EC signal.

Fig. 12. Mass peak shapes obtained in experiments with the ion trap
operated in the first stability zone for 90 sorting periods; 1—the
working signal is meander; the ionizing electron beam was injected
during the negative pulse (defocusing along ther coordinate);
2—the working signal is EC signal; the ionizing electron beam was
injected during the active part of the signal.

Table 1
The values of coefficients of a peak shapeKf for different signal
types

Type of signal

Kf

70
periods
of sorting

90
periods
of sorting

Meander Experiment 1.480 1.475
Theory 1.530 1.450

EC signal Experiment 1.111 1.091
Theory 1.109 1.070
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spectrometers and presents an exciting challenge to
the mass spectrometry community.”

We did not consider the practical aspects of base
trajectories for HMS. But, we do hope that attempts
will be made to develop instruments with high ana-
lytical parameters utilizing remarkable properties of
converging trajectories of ions (base trajectories).
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